Indian Statistical Institute, Bangalore Centre

Algebraic Topology (B. Math (Hons.) III year)

Back Paper Exam (50 MARKS)

Date: 27/12/2024

TIME ALLOWED: 3 HOURS

Instructions

- Answer ONLY Five questions from Questions 1 to 6) each carries 10 MARKS.
- \mathbb{R}^n denotes the *n*-dimensional Euclidean space.
- S^n denotes the *n*-dimensional sphere.
- $\mathbb{R}P^2$ denotes the real projective plane.
- T^2 denotes the 2-torus $S^1 \times S^1$.

Question 1. Find homology groups of the 2-dimensional torus T^2 . (10 Marks)

Question 2. Let T^2 be the 2-torus.

- (i) Let $f: T^2 \to T^2$ be a continuous map such that the induced homomorphism $f_*: H_1(T^2) \to H_1(T^2)$ is not an isomorphism. Prove or disprove the following statements. (6 Marks)
 - (a) f must be surjective.
 - (b) f cannot be surjective.
- (ii) Let $g: S^n \to S^n$ be a continuous map for which the range is a proper subset of S^n . Prove that q is null-homotopic and that deq(q) = 0. (4 Marks)

Question 3.

(i) Which of the following spaces are contractible? Justify your answer.

(a)	Convex set	(2 Marks)
(b)	2-sphere	(1 Marks)

- (1 Marks)
- (c) R^3 minus x-axis (2 Marks)
- (ii) Prove that there is no continuous map from $S^2 \to S^1$ such that f(-x) = -f(x)for all $x \in S^2$. (5 Marks)

Question 4. Find the fundamental group $\pi_1(X)$ of the following spaces. Justify your (10 Marks)answer.

(i) $S^2 \times S^1$

- (ii) Möbius band
- (iii) $\mathbb{R}P^2 \times C$, where C is a convex set.

(iv)
$$(\mathbb{R}^3 \setminus \{(0,0,0)\}) \setminus \{(x,y,0) \in \mathbb{R}^3 : x^2 + y^2 = 1\}$$

(v) $S^2 \vee S^3$

Question 5. List all the covering spaces (E, p) of the cylinder $S^1 \times [0, 1]$ up to covering space isomorphism. Justify your answer. (10 Marks)

Question 6.

- (i) Prove that S^2 is homeomorphic to S^n , for $n \in \mathbb{N}$ if and only if n = 2. (5 Marks)
- (ii) Determine the number of path-connected 3-coverings of the torus T^2 (up to equivalence of coverings). Justify your answer. (5 Marks)

END OF PAPER